The generator matrix

 1  0  1  1  1  1  1 2X^2+X  1  1  1 2X  1  1  1  1  0  1  1 2X  1  1  1 2X^2+X  1  1  1  1  1  1  1  1  1 X^2 X^2+X X^2+2X  1  1  1  1  1  1  1  1  1  1  1  1  1
 0  1 2X^2+2X+1  2 X+1 2X^2+X 2X^2+X+2  1 2X 2X^2+1 2X+2  1  0 2X^2+2X+1  2 2X  1 X+1 2X^2+X+2  1 2X^2+X 2X^2+1 2X+2  1 X^2 X^2+X X^2+2X X^2+2X+1 X^2+X+1 X^2+1 X^2+2 X^2+X+2 X^2+2X+2  1  1  1 X^2 X^2+X X^2+2X+1 X^2+X+1 X^2+2X X^2+X X^2+2X+1 X+1 2X^2+2X+1 X^2+X+1 2X^2+X  0 X^2
 0  0 2X^2  0 X^2 2X^2 X^2 X^2 X^2  0 2X^2 2X^2 X^2 X^2 2X^2 2X^2 X^2  0  0  0  0 2X^2 X^2 2X^2 2X^2 X^2  0  0 2X^2 X^2 X^2 2X^2  0 2X^2  0 X^2 X^2  0 X^2  0 X^2 2X^2 2X^2 2X^2  0 X^2 X^2 2X^2  0

generates a code of length 49 over Z3[X]/(X^3) who�s minimum homogenous weight is 95.

Homogenous weight enumerator: w(x)=1x^0+534x^95+120x^96+954x^98+74x^99+378x^101+44x^102+78x^104+4x^120

The gray image is a linear code over GF(3) with n=441, k=7 and d=285.
This code was found by Heurico 1.16 in 0.0685 seconds.